ORIGINAL PAPER

Enhanced cycling performance of spinel $LiMn_2O_4$ coated with $ZnMn_2O_4$ shell

Xifei Li · Youlong Xu

Received: 1 July 2007 / Revised: 1 September 2007 / Accepted: 2 September 2007 / Published online: 23 October 2007 © Springer-Verlag 2007

Abstract ZnMn₂O₄ shell-coated LiMn₂O₄ was prepared by a simple routine that the mixture of LiMn₂O₄ and ZnO were heated at 750 °C. The structure and electrochemical performance of as-prepared powder compared with the pure LiMn₂O₄ were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDAX), and galvanostatic charge-discharge testing, respectively. The results of XRD, SEM, and EDAX show that ZnMn₂O₄ is formed on the surface of LiMn₂O₄ particles. Charge-discharge testing reveals that ZnMn₂O₄ shell-coated LiMn₂O₄ greatly enhances the capacity retention of the spinel LiMn₂O₄. Furthermore, the modified LiMn₂O₄ shows significant enhancement in cycling stability at rates from 0.5 C to 12 C. It is found that the improved cycling performance and rate capability of the modified LiMn₂O₄ are attributed to the effective decrease of manganese dissolution from spinel structure because of ZnMn₂O₄ shell coated on the surface of LiMn₂O₄ particle.

Keywords $ZnMn_2O_4$ shell \cdot Capacity retention \cdot Rates capability \cdot Manganese dissolution

Introduction

Due to its low cost and low toxicity, the spinel LiMn₂O₄, the cathode for Li-ion batteries, has been extensively investigat-

X. Li · Y. Xu (⊠) School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China e-mail: ylxu@mail.xjtu.edu.cn ed. The spinel LiMn_2O_4 has a cubic structure with the space group of Fd3m symmetry in which lithium and manganese ions occupy tetrahedral (8a) sites and octahedral (16d) sites, respectively, within a cubic close-packed oxygen array with oxygen ions in 32e sites. Many reports revealed that the spinel LiMn_2O_4 offers a potentially attractive alternative to the presently commercialized LiCoO_2 . However, a key problem prohibiting LiMn_2O_4 from commercialization is its severe capacity fading during cycling [1].

There are several factors that cause capacity fade of spinel LiMn₂O₄, as it had been reported by many investigators [2–5]. During cycling, Mn can dissolve into the electrolyte according to the disproportionation equation $(2Mn_{solid}^{3+} \rightarrow Mn_{solid}^{4+} + Mn_{soluton}^{2+})$ [4]. To minimize Mn dissolution into electrolyte solution, an effective strategy, coating the spinel LiMn₂O₄ particles with organic and inorganic compounds, has been investigated [6–8]. Ha et al. [7] coated LiMn₂O₄ spinel with CeO₂ and improved the cyclability of the spinel LiMn₂O₄ cathode materials. Chan et al. [8] reported that Li₂O–2B₂O₃ glass was coated on the surface of spinel LiMn₂O₄, which showed better cyclability than the pure one.

In this study, for the fist time, we coated the spinel $LiMn_2O_4$ with $ZnMn_2O_4$ shell. The modified $LiMn_2O_4$ can be protected from Mn dissolution, as the shell of $ZnMn_2O_4$ is formed on the surface of the spinel $LiMn_2O_4$ particles. Therefore, it is expected that the modified $LiMn_2O_4$ shows the excellent cycle performance.

Experimental

Spinel $LiMn_2O_4$ powder was prepared by a solid-state reaction. A mixed fine powder of Li_2CO_3 and $MnCO_3$ in 1:4 mole ratio was heated at 600 °C for 6 h, then calcined at

Contribution to ICMAT 2007, Symposium K: Nanostructured and bulk materials for electrochemical power sources, July 1–6, 2007, Singapore.

750 °C in air for 72 h with intermittent grinding. Asprepared LiMn_2O_4 and ZnO (2 wt%) were mixed in the ball mill for 12 h. Then, the well-mixed powders were calcined at 750 °C for 2 h in air, followed by slow cooling to room temperature.

The spinel electrode was fabricated from a slurring mixture containing 70 wt% active material, 20 wt% acetylene black, and 10 wt% polyvinylidene fluoride binder in *N*-methylpyrrolidinone solvent. The slurry was coated on an aluminum foil, followed by drying in a vacuum oven at 120 °C for 48 h, and an electrode was formed.

The CR-2016-type coin cells were assembled in Mikrouna Super (1225/750) glove box under a dry argon atmosphere. LiMn₂O₄ electrode is used as positive electrode and Li sheet as negative electrode. Electrolyte was 1 M LiPF₆ dissolved in ethylene carbonate (EC)/diethyl carbonate (DEC)/ethyl methyl carbonate (EMC) in a 1:1:1 volume ratio (Dongguan Shanshan Battery Materials).

X-ray diffraction (XRD) analysis was performed with a Rigaku D/MAX-2400 diffractometer (Rigaku), using Cu-K α radiation ($\lambda = 0.154056$ nm). Scanning electron microscope (SEM) and energy dispersive spectrometry (EDAX) were taken with a JSM-6700F (JEOL). Charge–discharge characteristics were tested galvanostatically between 3.5 and 4.3 V (vs Li/Li⁺) at room temperature by LAND Battery Test System.

Results and discussion

The XRD patterns of pure LiMn₂O₄ and modified LiMn₂O₄ are showed in Fig. 1. In case of the pure LiMn₂O₄, only a single phase of spinel structure is observed. Some additional peaks for ZnMn₂O₄ can be observed for the modified LiMn₂O₄, but no peaks corresponding to the phase of ZnO. For the modified LiMn₂O₄ resulting from the calcinations of LiMn₂O₄ particle with ZnO at 750 °C for 2 h, we suppose that the zinc oxide reacts with LiMn₂O₄ to form ZnMn₂O₄ shell on the surface of LiMn₂O₄ particles. The lattice parameters of pure LiMn₂O₄ and modified LiMn₂O₄ were calculated from the XRD spectrum. They are 0.824577 and 0.824521 nm, respectively. No change in lattice parameter indicates that Zn²⁺ does not dope the spinel structure; that is, no phase of Li_{1-x}Zn_xMn₂O₄ or LiZn_xMn_{2-x}O₄ is formed.

A series of SEM micrographs, in Fig. 2, reveals the morphological changes that occurred during the process of modifying spinel LiMn_2O_4 . As it is shown in Fig. 2a, the pure LiMn_2O_4 had obvious visible fringes, indicating that the crystals of spinel LiMn_2O_4 grow very well and have good crystallinity. After mixing LiMn_2O_4 and ZnO in the ball mill, in Fig. 2b, it clearly exhibits that the fine powders of ZnO distributed uniformly on the surfaces of LiMn_2O_4 particles. After heat treatment, however, no individual zinc

Fig. 1 XRD patterns of a pure LiMn₂O₄ and b modified LiMn₂O₄

oxide particles are visible, which is in good agreement with the result of XRD. The surfaces of modified $LiMn_2O_4$ particles are smooth with a similar morphology of the pure $LiMn_2O_4$ particles. It is indicated that ZnO particles reacted with spinel $LiMn_2O_4$ particles and formed a shell of $ZnMn_2O_4$ on the surface of $LiMn_2O_4$ particles.

To confirm the composition of modified $LiMn_2O_4$ powder, EDAX analysis was performed and shown in Fig. 3. Zinc can be clearly observed on the surface of modified $LiMn_2O_4$. EDAX analysis thus reveals the evidence for the formation of $ZnMn_2O_4$ on the surface of modified $LiMn_2O_4$.

Figure 4 shows the TEM image of the cross-sections of the spinel LiMn₂O₄ without (a) and with (b) modification, respectively. Obviously, in the case of modified LiMn₂O₄, a shell of ZnMn₂O₄ is coated on the surface of LiMn₂O₄ particles, while no shell for pure one. The zinc oxides disappear due to reactions with spinel LiMn₂O₄, forming ZnMn₂O₄ shell on the surface of LiMn₂O₄ particles. This observation reveals that the shell/core particles were formed after the modification.

After charged and discharged galvanostatically for ten cycles, the assembled cells were stored at 60 °C for a week. Figure 5 shows the discharge curves of pure LiMn_2O_4 and modified LiMn_2O_4 before and after storage. The pure LiMn_2O_4 showed 18.2% capacity loss after storage at 60 °C for a week, while the modified LiMn_2O_4 showed 2.7% capacity loss. It is clear that the decrease of discharge

а

Fig. 2 SEM images of a pure $LiMn_2O_4$, b the mixture of $LiMn_2O_4$ and ZnO, (c) modified LiMn₂O₄

Fig. 3 EDAX analysis of modified LiMn₂O₄

capacity of pure LiMn₂O₄ before and after storage is severer than that of modified LiMn₂O₄. This obvious decrease of discharge capacity is due to Mn dissolution into the electrolyte solution [9]. Therefore, the modified LiMn₂O₄ effectively diminished the Mn dissolution into the

Fig. 4 Cross-sectional TEM image of a pure LiMn₂O₄ and **b** modified LiMn₂O₄

b

Fig. 5 Discharge curves of a pure LiMn $_2O_4$ and b modified LiMn $_2O_4$ before and after storage at 60 °C for a week

Fig. 6 Cycling behavior of a pure LiMn₂O₄ and b modified LiMn₂O₄

electrolyte solution because of the coated $ZnMn_2O_4$ shell on the surface of LiMn₂O₄ particle.

Pure $LiMn_2O_4$ powders (100 mg) and modified $LiMn_2O_4$ powders (100 mg) were soaked in 50 ml 1 M $LiPF_6$ EC/DEC/EMC (1:1:1 by volume ratio) under argon for 2 months, respectively. After soaking, the lithium manganese oxides were washed by ethanol and separated from the electrolyte with a filter paper. The amount of dissolved Mn ions in the electrolyte was analyzed by inductively coupled plasma. The Mn content for pure $LiMn_2O_4$ and modified $LiMn_2O_4$ are 481 and 23 µg ml⁻¹, respectively. The results reveal that the shell $ZnMn_2O_4$ can effectively minimize the Mn dissolution into the electrolyte, which is agreement with the result of Fig. 5.

Figure 6 compares the variation of specific capacity with cycle number for pure $LiMn_2O_4$ and modified $LiMn_2O_4$ at 0.5 C rate, in the 3.5–4.3 V ranges. The pure $LiMn_2O_4$ with

Fig. 7 The capacity vs. cycle number at different discharge rates: a pure $LiMn_2O_4$ and b modified $LiMn_2O_4$

initial capacity of 124.4 mAh g^{-1} declined rapidly as cycling, only remained 74.6% of its initial capacity after 100 cycles, which is about 0.306 mAh g^{-1} per cycle, while the capacity loss of modified LiMn₂O₄ at the 100th cycle, with about 0.052 mAh g^{-1} per cycle, is 4.9% of the maximum capacity that is 106.3 mAh g^{-1} . Obviously, the capacity retention of modified LiMn₂O₄ is remarkably enhanced.

Figure 7 presents the rate capability performance of pure LiMn₂O₄ and modified one at charge-discharge rates ranging from C/2 to 12C. Clearly, the modified LiMn₂O₄ maintained a steady discharge capacity as the chargedischarge rate increases, while the pure LiMn₂O₄ showed a rapidly decline at each charge-discharge rate, especially at high rates. For both pure $LiMn_2O_4$ and modified $LiMn_2O_4$, the discharge capacity decreased with the increase of charge-discharge rate (C/2-12C rate), which is caused by the low diffusion rate of the lithium ions in the LiMn₂O₄ particles; however, the decrease of discharge capacity of modified LiMn₂O₄ was much smaller than that of the pure one. As the charge-discharge rates were reduced from 12C to C/2, the pure LiMn₂O₄ only maintained 74.3% of its capacity on the 15th cycle at the same rate, while modified LiMn₂O₄ showed a very little capacity fading.

As described in introduction, capacity loss during cycling is related to Mn dissolution into the electrolyte solution. After being modified, $LiMn_2O_4$ diminished the direct contact with the electrolyte because of the $ZnMn_2O_4$ shell on the surface of $LiMn_2O_4$ particles. Therefore, our modification enhances the cycling performance of spinel $LiMn_2O_4$.

Conclusions

In this paper, we present a simple routine to the preparation of $ZnMn_2O_4$ shell-coated $LiMn_2O_4$ that shows excellent electrochemical performance. Because of the formation of $ZnMn_2O_4$ shell on the surface of spinel $LiMn_2O_4$ particles, the discharge curves of modified $LiMn_2O_4$ before and after storage at 60 °C for a week comparison with that of pure one shows that our modification diminishes the Mn dissolution into the electrolyte solution, which significantly improved the cycling performance of spinel $LiMn_2O_4$.

Acknowledgement The authors wish to acknowledge the financial support of the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, People's Republic of China.

References

- Singh D, Kim WS, Craciun V, Hofmann H, Singh RK (2002) Appl Surf Sci 197–198:516
- Ein EY, Urian RC, Wen W, Mukerjee S (2005) Electrochim Acta 50:1931
- 3. Jang DH, Shin YJ, Oh SM (1996) J Electrochem Soc 143:2204
- Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Electrochim Acta 51:3872
- Xia YY, Sakai T, Fujieda T, Yang XQ, Sun X, McBreen J, Yoshio M (2001) J Electrochem Soc 148:A723
- Arbizzani C, Balducci A, Mastragostino M, Rossi M, Soav F (2003) J Power Sources 119–121:695
- 7. Ha HW, Yun NJ, Kim K (2007) Electrochim Acta 52:3236
- 8. Chan HW, Duh JG, Sheen SR (2006) Electrochim Acta 51:3645
- 9. Yoshio M, Xia YY, Kumada NK, Ma SH (2001) J Power Sources 101:79